Global calibration of instrumental polarimetric phase gains

S. Steel1,2,*, M. Wielgus1,2,†, L. Blackburn1,2, S. Issaoun3, M. D. Johnson1,2

Jul 9, 2019 – Version 1.0

1 Center for Astrophysics | Harvard & Smithsonian, 60 Garden St., Cambridge, MA 02138, USA
2 Black Hole Initiative at Harvard University, 20 Garden St., Cambridge, MA 02138, USA
3 Department of Astrophysics/IMAPP, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

Abstract

This memo summarizes formalism describing the polarimetric calibration, focusing on measuring LCP-RCP phase offsets for each station from differences between phases in LL and RR visibilities on baselines to a reference station. We introduce a new calibration procedure utilizing multiple sources and globally fitting to the phase offsets in order to prevent overfitting to the intrinsic source polarimetric properties. In this procedure we calculate a family of polynomial and piecewise linear fits and select the optimal one using a proper information criterion.
1 Polarimetric calibration formalism

1.1 Principles of interferometry

The quantity measured in a radiointerferometric observation is the mutual coherence Γ of the incoming radiation, between two observing points r_1 and r_2. We denote the electromagnetic field measured by each point (each telescope) as E_1 and E_2 respectively. The mutual coherence function between these two observation points can be written as

$$\Gamma_{12} (\tau, r_1, r_2) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} E_1(t) E_2^*(t-\tau) \, dt$$

for τ representing the time offset between the arrival of signal at the two telescopes. T is the averaging time [1, 2]. Once the offset τ is accounted for [3, 4], we can represent the coherence function as the value of correlation between the electromagnetic fields E_1 and E_2,

$$\Gamma_{12} = \langle E_1, E_2^* \rangle$$

We refer to this correlated product as a visibility function \mathcal{V}. By the Van Cittert-Zernike theorem the visibility function is equivalent to the Fourier transform of the brightness in the sky I, that is

$$\mathcal{V}(u, v) = \int \int I(l, m) e^{-2\pi i (ul + vm)} \, dl \, dm.$$

Coordinates (u, v) represent the projection of baseline $r_2 - r_1$ onto the plane of observations, in the units of wavelength λ. The coordinates l and m are direction cosines to the source measured with respect to the u and v axes. The overarching goal of very long baseline interferometry (VLBI, [1]) as is concerned by the Event Horizon Telescope (EHT) is then to characterize the spatial distribution of the source brightness $I(l, m)$ based on the sparsely sampled Fourier domain data $\mathcal{V}(u, v)$.

1.2 Polarimetric calibration

Polarized emission from the astronomical source may encode important characterization of the magnetic field geometry [5]. A full polarized state of the radiation field can be measured in a VLBI observation by using two receivers, susceptible to orthogonally polarized components. In case of the circular polarization basis measurements, a following relation with the Stokes components [6, 7] is found

$$\begin{pmatrix}
\tilde{I}_{1,2} \\
\tilde{Q}_{1,2} \\
\tilde{U}_{1,2} \\
\tilde{V}_{1,2}
\end{pmatrix} = \frac{1}{2} \begin{pmatrix}
\langle E_{1,R} E_{2,R}^* \rangle + \langle E_{1,L} E_{2,L}^* \rangle \\
\langle E_{1,R} E_{2,R}^* \rangle + i \langle E_{1,L} E_{2,L}^* \rangle \\
i (\langle E_{1,L} E_{2,R}^* \rangle - \langle E_{1,R} E_{2,L}^* \rangle) \\
\langle E_{1,R} E_{2,R}^* \rangle - \langle E_{1,L} E_{2,L}^* \rangle
\end{pmatrix} = \frac{1}{2} \begin{pmatrix}
\mathcal{V}_{RR} + \mathcal{V}_{LL} \\
\mathcal{V}_{LR} + \mathcal{V}_{RL} \\
i (\mathcal{V}_{LR} - \mathcal{V}_{RL}) \\
\mathcal{V}_{RR} - \mathcal{V}_{LL}
\end{pmatrix}.$$

in which the left hand side of the equation 4 represents Stokes parameters, and the right hand side represents the measured circular polarization components, with indices "R" and "L" denoting right and left circular polarization, respectively. The majority of the EHT array telescopes measure the electric field in a circular basis (with the exception of ALMA, which performs measurement in a linear basis, subsequently converted to a circular basis at the correlation stage [8]). In equation 4, $\tilde{I}_{1,2}$ denotes the Fourier transform of the total intensity of the light I, and the remaining parameters can be thought as degrees to which the light is polarized linearly and circularly. Particularly, Stokes V, is related to the amount of circular polarization. If $\tilde{V} = 0$ then $\mathcal{V}_{RR} = \mathcal{V}_{LL}$, so there is no phase difference between the two. This constitutes an approximation that is useful for the data calibration and in many cases sufficiently accurate, as based on physical motivations we would expect $I > Q \approx U > V$. However, it is scientifically interesting to be able to detect \tilde{V}, or at least to put constraints on its magnitude. For that reason in this memo we attempt to relax the $V = 0$ calibration assumption.
The mathematical framework for the polarimetric calibration of the measured quantities \(E'_R\) and \(E'_L\) can be described in terms of Jones matrices \(J\) [5]

\[
\begin{pmatrix}
E'_R \\
E'_L
\end{pmatrix} =
\begin{pmatrix}
G_R & 0 \\
0 & G_L
\end{pmatrix}
\begin{pmatrix}
1 & D_R \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
e^{-i\psi} & 0 \\
0 & e^{i\psi}
\end{pmatrix}
\begin{pmatrix}
E_R \\
E_L
\end{pmatrix} =
J
\begin{pmatrix}
E_R \\
E_L
\end{pmatrix},\tag{5}
\]

where \(E_R\) and \(E_L\) model the true underlying values. Different components of the equation 5 correspond to:

1. field rotation angle \(\psi\), geometric effect related to rotation of polarized component on the sky, known a priori,
2. leakage terms \(D\), parametrizing susceptibility of polarimetric feeds to the perpendicular polarization component, often poorly characterized a priori,
3. gains \(G\), representing scaling of the signal energy related to the sensitivity of telescopes, for which a priori characterization is present, [9], atmospheric variability effects stabilized at the fringe fitting calibration stage [4], and instrumental polarimetric phase offsets, that are relevant for this memo.

From equation 5, combined for a pair of telescopes, we can derive the visibility calibration formula

\[
\begin{pmatrix}
V_{RR} & V_{RL} \\
V_{LR} & V_{LL}
\end{pmatrix} =
V_{12} = J_1^{-1}
\begin{pmatrix}
V'_R \\
V'_L
\end{pmatrix} = J_1^{-1}
(\begin{pmatrix}
E'_R \\
E'_L
\end{pmatrix}
\otimes
\begin{pmatrix}
E'_R \\
E'_L
\end{pmatrix}^t)
(\begin{pmatrix}
J_2^{-1}
\end{pmatrix}^t) =
J_1^{-1}
\begin{pmatrix}
V''_{RR} & V''_{RL} \\
V''_{LR} & V''_{LL}
\end{pmatrix} \begin{pmatrix}
J_2^{-1}
\end{pmatrix}^t,\tag{6}
\]

describing the relation between measured visibilities \(V\) and the true underlying values \(V'\).

1.3 Calibration of polarimetric phase gains

The aim of this memo is to describe the calibration of polarimetric phase gains, corresponding to the phase offset between two polarized feeds measured by the telescope. To this end, we assume that field rotation angle \(\psi\), leakage terms \(D\) and amplitude components of gains \(G\) have been accounted for. In that case equation 5 simplifies to

\[
\begin{pmatrix}
E'_R \\
E'_L
\end{pmatrix} =
\begin{pmatrix}
1 & 0 \\
0 & e^{i\vartheta_{RL}}
\end{pmatrix}
\begin{pmatrix}
E_R \\
E_L
\end{pmatrix} =
J_\theta
\begin{pmatrix}
E_R \\
E_L
\end{pmatrix}.\tag{7}
\]

If additionally we assume absolute calibration of one station (treated here are the first one in the pair), that is \(J_{0,1}\) is an identity matrix, then on baselines to this station we find

\[
\begin{pmatrix}
V_{RR} & V_{RL} \\
V_{LR} & V_{LL}
\end{pmatrix} =
(\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix})^{-1}
\begin{pmatrix}
V''_{RR} & V''_{RL} \\
V''_{LR} & V''_{LL}
\end{pmatrix}
(\begin{pmatrix}
1 & 0 \\
0 & e^{i\vartheta_{LL}}
\end{pmatrix})^{-1} =
\begin{pmatrix}
V''_{RR} & V''_{RL} \\
V''_{LR} & V''_{LL}
\end{pmatrix}
(\begin{pmatrix}
1 & 0 \\
0 & e^{i\vartheta_{RL}}
\end{pmatrix}).\tag{8}
\]

Under these assumptions the problem reduces to finding a family of phase offsets \(\vartheta_{RL,i}\) for all telescopes apart from the absolutely calibrated reference station. We also see that

\[
\varepsilon \equiv \arg \left(\frac{V_{RR}}{V_{LL}}\right) = \arg \left(\frac{V''_{RR}}{V''_{LL}}\right) - \vartheta_{RL,2} = \vartheta'_{RL,2} - \vartheta_{RL,2},\tag{9}
\]

and finally

\[
\vartheta'_{RL,2} = \vartheta_{RL,2} + \varepsilon.\tag{10}
\]

Equation 10 gives a relation between measured phase differences between RR and LL visibilities on baselines to an absolutely calibrated station \(\vartheta'_{RL,2}\), instrumental phase offset between the right and left circular polarization receivers on non-calibrated station \(\vartheta_{RL,2}\) and unknown true phase difference between RR and LL visibilities \(\varepsilon\), expected to be small, \(\varepsilon \approx 0\). The Stokes \(V = 0\) calibration is tantamount to assuming \(\vartheta'_{RL,2} = \vartheta_{RL,2}\). In this work we attempt to disentangle source dependent \(\varepsilon\) from the instrumental effect \(\vartheta_{RL}\).
2 Calibrating polarimetric phase gains

Polarimetric calibration of the EHT data is performed in the framework of the eat library [10]. A standard approach to polarimetric phase gains would be to individually treat observations of different sources, calibrating them locally in time to a model of equal mean RR and LL visibility phases. This poses a risk of wiping out signatures of Stokes V by overfitting to source-specific phases ε.

The approach we investigate here is different in two ways:

1. global fits in time are utilized rather than local in time calibration. We can often expect that the instrumental offsets ϑ_{RL} should either be constant in time, or exhibit linear trends,
2. utilizing multiple sources for the calibration to prevent the local overfitting.

A schematic description of this approach is shown in Figure 1. We assume perfect calibration of the ALMA array, and estimate station gain phases on baselines to ALMA within the framework described in Section 1.3. We utilize aggregated data representing multiple observed sources (e.g., the science target source and its calibrators), potentially representing multiple days of an observational campaign. We then fit multiple different models to the data, that is, to the measured phase offsets between RR and LL visibilities on ALMA baselines, $\vartheta_{RL} = \arg(V'_{RR}/V'_{LL})$. The models are fitted utilizing the data thermal uncertainties $\sigma_{th,i}$ and estimated systematic uncertainties $\sigma_{sys,i}$, with weights

$$w_i = \sigma_{i}^{-1} = \left(\sigma_{sys,i}^{-2} + \sigma_{th,i}^{-2}\right)^{-1}.$$

For the presented test we have used $\sigma_{sys} = 2^\circ$. Models that are fitted to the data fall into two categories:

1. piecewise regression, linear on subdomains, specified number of segments, boundaries between segments are solved for, number of degrees of freedom $= 3 \times$ number of segments. Fitted using mlinsights.mlmodel.PiecewiseRegressor within the scikit-learn framework [11].
2. global polynomials, specified order, number of degrees of freedom = polynomial order + 1. Fitted using `numpy.polifit`.

Finally, the optimal model is selected based on an information criterion and added to a calibration text file, utilized by the HOPS-EHT data reduction pipeline [4, 10].

2.1 Information criteria

The two popular methods for optimal model selection are Akaike Information Criterion (AIC, [12]) and Bayesian Information Criterion (BIC, [13]). Formulae governing the criteria are

\[
AIC = 2k - 2 \ln(\hat{L}), \tag{12}
\]

\[
BIC = \ln(N) k - 2 \ln(\hat{L}), \tag{13}
\]

in which \(k\) represents the number of parameters (degrees of freedom) in the model, \(N\) represents the number of datapoints, and \(\hat{L}\) is the maximum of the likelihood function for the model. Approximating distributions associated with measurements with normal distributions of known (but different for each datapoint) standard deviation \(\sigma_i\) given by equation 11, we find

\[
\ln \hat{L} \approx -\frac{1}{2} \sum_{i=1}^{N} \left(\frac{x_i - m_i}{\sigma_i} \right)^2 + C = -\frac{1}{2} \chi^2 + C. \tag{14}
\]

Here \(x_i\) is an \(i\)-th measurement with uncertainty \(\sigma_i\), \(m_i\) is model prediction for the \(i\)-th measurement and \(C\) is a model-independent constant. Then, neglecting the constant, the criteria become simply

\[
AIC = 2k + \chi^2, \tag{15}
\]

\[
BIC = \ln(N) k + \chi^2. \tag{16}
\]

The \(\chi^2\) square term is reduced when more degrees of freedom are added to the model. This behavior is counteracted by the term proportional to the number of degrees of freedom \(k\). The optimal model in this framework is simply the one resulting in the smallest value of the information criterion.

We illustrate the model evaluation with the Global Millimeter VLBI Array data from 2017 observation campaign on Galactic Center [14] in Figures 1-3. Baseline connecting ALMA (AA, Chile) and Green Bank Telescope (GB, West Virginia, USA) is shown.
Figure 1: Examples of models with piecewise linear fit with 1, 2, 3 and 4 segments used. Both criteria favor model with 3 segments (bottom left).

Figure 2: Examples of models with polynomial fit of order 1, 2, 3, 4. Both criteria select third order polynomial (bottom left) as an optimal polynomial degree choice. However, both also point at 3-segments piecewise model as better than any polynomial one.
2.2 Discussion

The method for calibrating instrumental polarimetric phase gains using global in time, multi-source modeling was presented. The method constitutes an alternative to a more standard approach of local in time aligning of right and left circular polarization components phases, and offers a chance to relax the assumptions of the alternative procedure. Because equality between R and L phases is not assumed, data calibrated with this method can be used to obtain more reliable upper limits on the Stokes V component value.

The choice of a particular information criterion is not entirely clear. Both BIC and AIC are the option in the current implementation, and they are often consistent, as in the presented example.

R-L phase offsets could be measured in the future using a tone injection into the recorded data stream. In this way the offsets could be *measured*, rather than *modeled*.

Figure 3: Comparison of R-L phase offsets before and after application of the described calibration procedure.
References

